Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.312
Filtrar
1.
JCO Precis Oncol ; 8: e2300414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579191

RESUMO

PURPOSE: The lack of personalized management of bladder cancer (BlCa) results in patients' lifelong post-treatment monitoring with invasive interventions, underlying the urgent need for tailored and minimally invasive health care services. On the basis of our previous findings on miR-143/145 cluster methylation in bladder tumors, we evaluated its clinical significance in pretreatment cell-free DNA (cfDNA) of patients with BlCa. MATERIALS AND METHODS: Methylation analysis was performed in our screening cohort (120 patients with BlCa; 20 age-matched healthy donors) by bisulfite-based pyrosequencing. Tumor recurrence/progression for patients with non-muscle-invasive bladder cancer, and progression and mortality for patients with muscle-invasive bladder cancer (MIBC) were used as clinical end point events in survival analysis. Bootstrap analysis was applied for internal validation of Cox regression models and decision curve analysis for assessment of clinical benefit on disease prognosis. RESULTS: Decreased methylation of MIR145 core promoter in pretreatment cfDNA was associated with short-term disease progression (multivariate Cox: hazard ratio [HR], 2.027 [95% CI, 1.157 to 3.551]; P = .010) and poor overall survival (multivariate Cox: HR, 2.098 [95% CI, 1.154 to 3.817]; P = .009) of patients with MIBC after radical cystectomy (RC). Multivariate models incorporating MIR145 promoter methylation in cfDNA with tumor stage clearly ameliorated patients' risk stratification, highlighting superior clinical benefit in MIBC prognostication. CONCLUSION: Reduced pretreatment cfDNA methylation of MIR145 core promoter was markedly correlated with increased risk for short-term progression and worse survival of patients with MIBC after RC and adjuvant therapy, supporting modern personalized and minimally invasive prognosis. Methylation profiling of MIR145 core promoter in pretreatment cfDNA could serve as a minimally invasive and independent predictor of MIBC treatment outcome and emerge as a promising marker for blood-based test in BlCa.


Assuntos
Ácidos Nucleicos Livres , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/uso terapêutico , Biópsia Líquida , Metilação , MicroRNAs/genética , MicroRNAs/uso terapêutico , Músculos/patologia , Recidiva Local de Neoplasia/patologia , Resultado do Tratamento , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Metilação de DNA/genética
2.
BMC Cancer ; 24(1): 407, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566053

RESUMO

BACKGROUND: Primary central nervous system lymphoma (PCNSL) are rare mature B-cell lymphoproliferative diseases characterized by a high incidence of MYD88 L265P and CD79B Y196 hotspot mutations. Diagnosis of PCNSL can be challenging. The aim of the study was to analyze the detection rate of the MYD88 L265P and CD79B Y196 mutation in cell free DNA (cfDNA) in plasma of patients with PCNSL. METHODS: We analyzed by digital droplet PCR (ddPCR) to determine presence of the MYD88 L265P and CD79B Y196 hotspot mutations in cfDNA isolated from plasma of 24 PCNSL patients with active disease. Corresponding tumor samples were available for 14 cases. Based on the false positive rate observed in 8 healthy control samples, a stringent cut-off for the MYD88 L265P and CD79B Y196 mutation were set at 0.3% and 0.5%, respectively. RESULTS: MYD88 L265P and CD79B Y196 mutations were detected in 9/14 (64%) and 2/13 (15%) tumor biopsies, respectively. In cfDNA samples, the MYD88 L265P mutation was detected in 3/24 (12.5%), while the CD79B Y196 mutation was not detected in any of the 23 tested cfDNA samples. Overall, MYD88 L265P and/or CD79B Y196 were detected in cfDNA in 3/24 cases (12.5%). The detection rate of the combined analysis did not improve the single detection rate for either MYD88 L265P or CD79B Y196. CONCLUSION: The low detection rate of MYD88 L265P and CD79B Y196 mutations in cfDNA in the plasma of PCNSL patients argues against its use in routine diagnostics. However, detection of MYD88 L265P by ddPCR in cfDNA in the plasma could be considered in challenging cases.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Linfoma Difuso de Grandes Células B , Humanos , DNA Tumoral Circulante/genética , Fator 88 de Diferenciação Mieloide/genética , Linfoma Difuso de Grandes Células B/patologia , Mutação , Ácidos Nucleicos Livres/genética , Reação em Cadeia da Polimerase
3.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587071

RESUMO

BACKGROUNDDifferentiating malignant from nonmalignant body fluids remains a clinical challenge because of the unsatisfying performance of conventional cytology. We aimed to improve the sensitivity and ubiquity of cancer cell detection by assaying universal cancer-only methylation (UCOM) markers in supernatant cell-free DNA (cfDNA).METHODSAn observational prospective cohort including 1,321 nonmalignant and malignant body fluids of multiple cancers was used to develop and validate a cfDNA UCOM methylation diagnostic assay. All samples were divided into 2 portions for cytology and supernatant cfDNA methylation analysis.RESULTSThe significant hypermethylation of a potentially novel UCOM marker, TAGMe, together with the formerly reported PCDHGB7, was identified in the cfDNA of malignant body fluid samples. The combined model, cell-free cancer-universal methylation (CUE), was developed and validated in a prospective multicancer cohort with markedly elevated sensitivity and specificity, and was further verified in a set containing additional types of malignant body fluids and metastases. In addition, it remained hypersensitive in detecting cancer cells in cytologically negative malignant samples.CONCLUSIONcfDNA methylation markers are robust in detecting tumor cells and are applicable to diverse body fluids and tumor types, providing a feasible complement to current cytology-based diagnostic analyses.TRIAL REGISTRATIONThis study was registered at Chictr.org.cn (ChiCTR2200060532).FUNDINGNational Natural Science Foundation of China (32270645, 31872814, 32000505, 82170088), the National Key R&D Program of Ningxia Hui Autonomous region (2022BEG01003), Shanghai Municipal Key Clinical Specialty (shslczdzk02201), Science and Technology Commission of Shanghai Municipality (20DZ2261200, 20DZ2254400), and Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101).


Assuntos
Líquidos Corporais , Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Estudos Prospectivos , China , Neoplasias/diagnóstico , Neoplasias/genética , Metilação de DNA
4.
PLoS One ; 19(4): e0295987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593164

RESUMO

Survival rates in non-small cell lung cancer (NSCLC) are low. Detection of circulating tumor DNA in liquid biopsy (plasma) is increasingly used to identify targeted therapies for clinically actionable mutations, including EGFR mutations in NSCLC. The cobas® EGFR Mutation Test v2 (cobas EGFR test) is FDA-approved for EGFR mutation detection in tissue or liquid biopsy from NSCLC. Standard K2EDTA tubes require plasma separation from blood within 4 to 8 hours; however, Roche Cell-Free DNA (cfDNA) Collection Tubes (Roche cfDNA tube) enable whole blood stability for up to 7 days prior to plasma separation. This analysis assessed performance of Roche cfDNA tubes with the cobas EGFR test for the detection of EGFR mutations in plasma from healthy donors or patients with NSCLC. Overall, test performance was equally robust with either blood collection tube, eg, regarding limit of detection, linearity, and reproducibility, making Roche cfDNA tubes suitable for routine clinical laboratory use in this setting. Importantly, the Roche cfDNA tubes provided more flexibility for specimen handling versus K2EDTA tubes, eg, in terms of tube mixing, plasma separation, and sample stability, and do not require processing of blood within 8 hours thereby increasing the reach of plasma biopsies in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Ácidos Nucleicos Livres/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Reprodutibilidade dos Testes , Mutação , Reação em Cadeia da Polimerase , Receptores ErbB/genética
5.
Nat Commun ; 15(1): 3292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632274

RESUMO

Cancers of Unknown Primary (CUP) remains a diagnostic and therapeutic challenge due to biological heterogeneity and poor responses to standard chemotherapy. Predicting tissue-of-origin (TOO) molecularly could help refine this diagnosis, with tissue acquisition barriers mitigated via liquid biopsies. However, TOO liquid biopsies are unexplored in CUP cohorts. Here we describe CUPiD, a machine learning classifier for accurate TOO predictions across 29 tumour classes using circulating cell-free DNA (cfDNA) methylation patterns. We tested CUPiD on 143 cfDNA samples from patients with 13 cancer types alongside 27 non-cancer controls, with overall sensitivity of 84.6% and TOO accuracy of 96.8%. In an additional cohort of 41 patients with CUP CUPiD predictions were made in 32/41 (78.0%) cases, with 88.5% of the predictions clinically consistent with a subsequent or suspected primary tumour diagnosis, when available (23/26 patients). Combining CUPiD with cfDNA mutation data demonstrated potential diagnosis re-classification and/or treatment change in this hard-to-treat cancer group.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Primárias Desconhecidas , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias Primárias Desconhecidas/genética , Biomarcadores Tumorais/genética , Metilação de DNA , Biópsia Líquida
6.
Commun Biol ; 7(1): 441, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600351

RESUMO

ABTRACT: Clinical circulating cell-free DNA (cfDNA) testing is now routine, however test accuracy remains limited. By understanding the life-cycle of cfDNA, we might identify opportunities to increase test performance. Here, we profile cfDNA release across a 24-cell line panel and utilize a cell-free CRISPR screen (cfCRISPR) to identify mediators of cfDNA release. Our panel outlines two distinct groups of cell lines: one which releases cfDNA fragmented similarly to clinical samples and purported as characteristic of apoptosis, and another which releases larger fragments associated with vesicular or necrotic DNA. Our cfCRISPR screens reveal that genes mediating cfDNA release are primarily involved with apoptosis, but also identify other subsets of genes such as RNA binding proteins as potential regulators of cfDNA release. We observe that both groups of cells lines identified primarily produce cfDNA through apoptosis. These results establish the utility of cfCRISPR, genetically validate apoptosis as a major mediator of DNA release in vitro, and implicate ways to improve cfDNA assays.


Assuntos
Ácidos Nucleicos Livres , Ácidos Nucleicos Livres/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Apoptose/genética , DNA/genética , Linhagem Celular
7.
Clin Exp Med ; 24(1): 69, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578383

RESUMO

Liquid biopsy is a minimally invasive diagnostic tool for identification of tumor-related mutations in circulating cell-free DNA (cfDNA). The aim of this study was to investigate feasibility, sensitivity, and specificity of non-invasive prenatal test (NIPT) for identification of chromosomal abnormalities in cfDNA from a total of 77 consecutive patients with non-Hodgkin B-cell lymphomas, Hodgkin lymphoma (HL), or plasma cell dyscrasia. In this case series, half of patients had at least one alteration, more frequently in chromosome 6 (23.1%), chromosome 9 (20.5%), and chromosomes 3 and 18 (16.7%), with losses of chromosome 6 and gains of chromosome 7 negatively impacting on overall survival (OS), with a 5-year OS of 26.9% and a median OS of 14.6 months, respectively (P = 0.0009 and P = 0.0004). Moreover, B-cell lymphomas had the highest NIPT positivity, especially those with aggressive lymphomas, while patients with plasma cell dyscrasia with extramedullary disease had a higher NIPT positivity compared to conventional cytogenetics analysis and a worse outcome. Therefore, we proposed a NIPT-based liquid biopsy a complementary minimally invasive tool for chromosomal abnormality detection in hematological malignancies. However, prospective studies on larger cohorts are needed to validate clinical utility of NIPT-based liquid biopsy in routinely clinical practice.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Hematológicas , Linfoma de Células B , Paraproteinemias , Gravidez , Feminino , Humanos , Estudos Prospectivos , Hematopoiese Clonal , Aberrações Cromossômicas , Ácidos Nucleicos Livres/genética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética
8.
J Oral Pathol Med ; 53(4): 258-265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494749

RESUMO

BACKGROUND: The objective of this study is to evaluate the diagnostic accuracy of plasma-based liquid biopsy for the detection of the BRAF V600E mutation in circulating cell-free DNA from patients with ameloblastoma. METHODS: This is a prospective diagnostic accuracy study conducted based on the Standards for Reporting Diagnostic Accuracy recommendations. The index test was the plasma-based liquid biopsy, whereas the reference standard was the conventional tissue biopsy. The target condition was the detection of BRAF V600E mutation. The study population consisted of individuals with ameloblastoma recruited from three tertiary hospitals from Brazil. A negative control group composed of three individuals with confirmed wild-type BRAF lesions were included. The participants underwent plasma circulating cell-free DNA and tumor tissue DNA isolation, and both were submitted to using competitive allele-specific TaqMan™ real-time polymerase chain reaction technology mutation detection assays. Sensitivity and specificity measures and positive and negative predictive values were calculated. RESULTS: Twelve patients with conventional ameloblastoma were included. BRAF V600E mutation was detected in 11/12 (91.66%) ameloblastoma tissue samples. However, the mutation was not detected in any of the plasma-based liquid biopsy circulating cell-free DNA samples in both ameloblastomas and negative control group. The sensitivity and specificity of plasma-based liquid biopsy for the detection of the BRAF V600E mutation in circulating cell-free DNA was 0.0 and 1.0, respectively. The agreement between index test and reference standard results was 26.66%. CONCLUSION: Plasma-based liquid biopsy does not seem to be an accurate method for the detection of the BRAF V600E mutation in circulating circulating cell-free DNA from patients with ameloblastoma, regardless of tumor size, anatomic location, recurrence status, and other clinicopathological features.


Assuntos
Ameloblastoma , Ácidos Nucleicos Livres , Humanos , Ameloblastoma/diagnóstico , Ameloblastoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Prospectivos , Mutação , Ácidos Nucleicos Livres/genética
9.
Sci Rep ; 14(1): 5841, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462648

RESUMO

Cancer presents a significant global health burden, resulting in millions of annual deaths. Timely detection is critical for improving survival rates, offering a crucial window for timely medical interventions. Liquid biopsy, analyzing genetic variations, and mutations in circulating cell-free, circulating tumor DNA (cfDNA/ctDNA) or molecular biomarkers, has emerged as a tool for early detection. This study focuses on cancer detection using mutations in plasma cfDNA/ctDNA and protein biomarker concentrations. The proposed system initially calculates the correlation coefficient to identify correlated features, while mutual information assesses each feature's relevance to the target variable, eliminating redundant features to improve efficiency. The eXtrem Gradient Boosting (XGBoost) feature importance method iteratively selects the top ten features, resulting in a 60% dataset dimensionality reduction. The Light Gradient Boosting Machine (LGBM) model is employed for classification, optimizing its performance through a random search for hyper-parameters. Final predictions are obtained by ensembling LGBM models from tenfold cross-validation, weighted by their respective balanced accuracy, and averaged to get final predictions. Applying this methodology, the proposed system achieves 99.45% accuracy and 99.95% AUC for detecting the presence of cancer while achieving 93.94% accuracy and 97.81% AUC for cancer-type classification. Our methodology leads to enhanced healthcare outcomes for cancer patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Biópsia Líquida/métodos , Ácidos Nucleicos Livres/genética , Neoplasias/diagnóstico , Neoplasias/genética , DNA de Neoplasias , Aprendizado de Máquina
10.
Fa Yi Xue Za Zhi ; 40(1): 70-76, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500464

RESUMO

In recent years, with the continuous progress of DNA extraction and detection technology, cell-free DNA(cfDNA)has been widely used in the life science field, and its potential application value in forensic identification is becoming more and more obvious. This paper reviews the concept, formation mechanism, and classification of cfDNA, etc., and describes the latest research progress of cfDNA in personal identification of crime scene touch DNA samples and non-invasive prenatal paternity testing (NIPPT). Meanwhile, this paper summarizes the potential application of cfDNA in injury inference, and discusses the advantages and disadvantages of common cfDNA analysis methods and techniques, and its application prospects, to provide a new idea for the wide application of cfDNA in the field of forensic science.


Assuntos
Ácidos Nucleicos Livres , Gravidez , Feminino , Humanos , Ácidos Nucleicos Livres/genética , Paternidade , Ciências Forenses , Tato , DNA/genética
11.
Int J Biochem Cell Biol ; 169: 106555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428633

RESUMO

Cardiovascular diseases are the foremost contributor to global mortality, presenting a complex etiology and an expanding array of risk factors. Coronary artery disease characterized by atherosclerotic plaque build-up in the coronary arteries, imposes significant mortality and financial burdens, especially in low- and middle-income nations. The pathogenesis of coronary artery disease involves a multifaceted interplay of genetic, environmental, and epigenetic factors. Epigenetic regulation contributes to the dynamic control of gene expression without altering the underlying DNA sequence. The mounting evidence that highlights the pivotal role of epigenetic regulation in coronary artery disease development and progression, offering potential avenues for the development of novel diagnostic biomarkers and therapeutic targets. Abnormal DNA methylation patterns are linked to the modulation of gene expression involved in crucial processes like lipid metabolism, inflammation, and vascular function in the context of coronary artery disease. Cell-free DNA has become invaluable in tumor biology as a liquid biopsy, while its applications in coronary artery disease are limited, but intriguing. Atherosclerotic plaque rupture causes myocardial infarction, by depriving heart muscles of oxygen, releasing cell-free DNA from dead cardiac cells, and providing a minimally invasive source to explore tissue-specific epigenetic alterations. We discussed the methodologies for studying the global methylome and hydroxy-methylome landscape, their advantages, and limitations. It explores methylome alterations in coronary artery disease, considering risk factors and their relevance in coronary artery disease genesis. The review also details the implications of MI-derived cell-free DNA for developing minimally invasive biomarkers and associated challenges.


Assuntos
Ácidos Nucleicos Livres , Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia , Placa Aterosclerótica/genética , Epigênese Genética , Epigenoma , Ácidos Nucleicos Livres/genética , Infarto do Miocárdio/metabolismo , Biomarcadores
12.
Ann Clin Transl Neurol ; 11(3): 744-756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481040

RESUMO

OBJECTIVE: Methylation of plasma cell-free DNA (cfDNA) has potential as a marker of brain damage in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, we study methylation of cfDNA in presymptomatic and symptomatic carriers of genetic FTD pathogenic variants, next to healthy controls. METHODS: cfDNA was isolated from cross-sectional plasma of 10 presymptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), 10 symptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), and 9 healthy controls. Genome-wide methylation of cfDNA was determined using a high-resolution sequencing technique (MeD-seq). Cumulative scores based on the identified differentially methylated regions (DMRs) were estimated for presymptomatic carriers (vs. controls and symptomatic carriers), and reevaluated in a validation cohort (8 presymptomatic: 3 C9orf72, 3 GRN, and 2 MAPT; 26 symptomatic: 7 C9orf72, 6 GRN, 12 MAPT, and 1 TARDBP; 13 noncarriers from genetic FTD families). RESULTS: Presymptomatic carriers showed a distinctive methylation profile compared to healthy controls and symptomatic carriers. Cumulative DMR scores in presymptomatic carriers enabled to significantly differentiate presymptomatic carriers from healthy controls (p < 0.001) and symptomatic carriers (p < 0.001). In the validation cohort, these scores differentiated presymptomatic carriers from symptomatic carriers (p ≤ 0.007) only. Transcription-start-site methylation in presymptomatic carriers, generally associated with gene downregulation, was enriched for genes involved in ubiquitin-dependent processes, while gene body methylation, generally associated with gene upregulation, was enriched for genes involved in neuronal cell processes. INTERPRETATION: A distinctive methylation profile of cfDNA characterizes the presymptomatic stage of genetic FTD, and could reflect neuronal death in this stage.


Assuntos
Ácidos Nucleicos Livres , Demência Frontotemporal , Doença de Pick , Humanos , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Estudos Transversais , Metilação de DNA , Mutação , Doença de Pick/genética , Ácidos Nucleicos Livres/genética
13.
Eur J Endocrinol ; 190(3): 234-247, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451242

RESUMO

OBJECTIVE: Adrenocortical carcinoma (ACC) is a rare aggressive cancer with heterogeneous behaviour. Disease surveillance relies on frequent imaging, which comes with significant radiation exposure. The aim of the study was to investigate the role of circulating cell-free DNA (ccfDNA)-related biomarkers (BMs) for prognostication and monitoring of ACC. DESIGN AND METHODS: We investigated 34 patients with ACC and 23 healthy subjects (HSs) as controls. Circulating cell-free DNA was extracted by commercial kits and ccfDNA concentrations were quantified by fluorimeter (BM1). Targeted sequencing was performed using a customized panel of 27 ACC-specific genes. Leucocyte DNA was used to discriminate somatic variants (BM2), while tumour DNA was sequenced in 22/34 cases for comparison. Serial ccfDNA samples were collected during follow-up in 19 ACC patients (median period 9 months) and analysed in relationship with standard radiological imaging. RESULTS: Circulating cell-free DNA concentrations were higher in ACC than HS (mean ± SD, 1.15 ± 1.56 vs 0.05 ± 0.05 ng/µL, P < .0001), 96% of them being above the cut-off of 0.146 ng/µL (mean HS + 2 SD, positive BM1). At ccfDNA sequencing, 47% of ACC showed at least 1 somatic mutation (positive BM2). A combined ccfDNA-BM score was strongly associated with both progression-free and overall survival (hazard ratio [HR] = 2.63; 95% CI, 1.13-6.13; P = .010, and HR = 5.98; 95% CI, 2.29-15.6; P = .0001, respectively). During disease monitoring, positive BM2 showed the best specificity (100%) and sensitivity (67%) to detect ACC recurrence or progress compared with BM1. CONCLUSION: ccfDNA-related BMs are frequently detected in ACC patients and represent a promising, minimally invasive tool to predict clinical outcome and complement surveillance imaging. Our findings will be validated in a larger cohort of ACCs with long-term follow-up.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Ácidos Nucleicos Livres , Humanos , Carcinoma Adrenocortical/diagnóstico , Carcinoma Adrenocortical/genética , Ácidos Nucleicos Livres/genética , Biomarcadores , DNA/genética , Neoplasias do Córtex Suprarrenal/diagnóstico , Neoplasias do Córtex Suprarrenal/genética , Biomarcadores Tumorais/genética
14.
Front Immunol ; 15: 1282521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455037

RESUMO

Background: The routine use of donor-derived cell-free DNA (dd-cfDNA) assays to monitor graft damage in patients after kidney transplantation is being implemented in many transplant centers worldwide. The interpretation of the results can be complicated in the setting of multiple sequential kidney transplantations where accurate donor assignment of the detected dd-cfDNA can be methodologically challenging. Methods: We investigated the ability of a new next-generation sequencing (NGS)-based dd-cfDNA assay to accurately identify the source of the detected dd-cfDNA in artificially generated samples as well as clinical samples from 31 patients who had undergone two sequential kidney transplantations. Results: The assay showed a high accuracy in quantifying and correctly assigning dd-cfDNA in our artificially generated chimeric sample experiments over a clinically meaningful quantitative range. In our clinical samples, we were able to detect dd-cfDNA from the first transplanted (nonfunctioning) graft in 20% of the analyzed patients. The amount of dd-cfDNA detected from the first graft was consistently in the range of 0.1%-0.6% and showed a fluctuation over time in patients where we analyzed sequential samples. Conclusion: This is the first report on the use of a dd-cfDNA assay to detect dd-cfDNA from multiple kidney transplants. Our data show that a clinically relevant fraction of the transplanted patients have detectable dd-cfDNA from the first donor graft and that the amount of detected dd-cfDNA is in a range where it could influence clinical decision-making.


Assuntos
Ácidos Nucleicos Livres , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Doadores de Tecidos , Bioensaio , Ácidos Nucleicos Livres/genética , Tomada de Decisão Clínica
15.
J Mol Diagn ; 26(5): 413-422, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490303

RESUMO

Blood-based liquid biopsy is increasingly used in clinical care of patients with cancer, and fraction of tumor-derived DNA in circulation (tumor fraction; TFx) has demonstrated clinical validity across multiple cancer types. To determine TFx, shallow whole-genome sequencing of cell-free DNA (cfDNA) can be performed from a single blood sample, using an established computational pipeline (ichorCNA), without prior knowledge of tumor mutations, in a highly cost-effective manner. We describe assay validation of this approach to facilitate broad clinical application, including evaluation of assay sensitivity, precision, repeatability, reproducibility, pre-analytic factors, and DNA quality/quantity. Sensitivity to detect TFx of 3% (lower limit of detection) was 97.2% to 100% at 1× and 0.1× mean sequencing depth, respectively. Precision was demonstrated on distinct sequencing instruments (HiSeqX and NovaSeq) with no observable differences. The assay achieved prespecified 95% agreement of TFx across replicates of the same specimen (repeatability) and duplicate samples in different batches (reproducibility). Comparison of samples collected in EDTA and Streck tubes from single venipuncture in 23 patients demonstrated that EDTA or Streck tubes were comparable if processed within 8 hours. On the basis of a range of DNA inputs (1 to 50 ng), 20 ng cfDNA is the preferred input, with 5 ng minimum acceptable. Overall, this shallow whole-genome sequencing of cfDNA and ichorCNA approach offers sensitive, precise, and reproducible quantitation of TFx, facilitating assay application in clinical cancer care.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Reprodutibilidade dos Testes , Ácido Edético , Neoplasias/diagnóstico , Neoplasias/genética , DNA , Biomarcadores Tumorais/genética
16.
Clin Chim Acta ; 557: 117856, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490340

RESUMO

The adaptability of epigenetics offers a compelling research avenue, notably in the context of Type 2 Diabetes Mellitus (T2DM) biomarkers and provides a nuanced approach to managing biological systems for diagnosis. However, challenges such as DNA degradation during methylation studies are prominent, especially with cell-free DNA (cfDNA) which is present in small quantities in plasma, calling for innovative solutions. To tackle these challenges, four methodological approaches have been identified: firstly, selecting an appropriate DNA extraction method and enhancing DNA yield through amplification; secondly, adapting bisulfite modification techniques to minimize DNA degradation; thirdly, utilizing tools capable of working with minimal DNA quantities; and lastly, employing bisulfite-free methylation techniques. A particularly promising approach is the use of Methylated CpG Tandem Amplification and Sequencing (MCTA-Seq) combined with fragmentation analysis. MCTA-Seq, especially when targeting the CGCGCGG motif sequence associated with T2DM, is an underexplored area. In addressing the dearth of the exploration, our in-silico analysis identified 66 genes with the CGCGCGG motif sequence that contribute to the pathophysiology of T2DM. Further analysis revealed five potential target genes for T2DM screening: EP300, SRC, PPARG, CREBBP, and NCOR2. The method can also be integrated into fragment analysis, notable for its ability to differentiate between long and short DNA segments effectively. Such a distinction is a valuable asset in future diagnostic methodologies, particularly relevant in the analysis of cfDNA, where high precision and sensitivity are essential. However, it is crucial to validate these genes with clinical studies to confirm their relevance and effectiveness in T2DM diagnosis.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Metilação de DNA , Epigênese Genética/genética , Biologia Computacional , DNA , Ácidos Nucleicos Livres/genética
17.
Nat Commun ; 15(1): 2790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555308

RESUMO

Analysis of DNA methylation in cell-free DNA reveals clinically relevant biomarkers but requires specialized protocols such as whole-genome bisulfite sequencing. Meanwhile, millions of cell-free DNA samples are being profiled by whole-genome sequencing. Here, we develop FinaleMe, a non-homogeneous Hidden Markov Model, to predict DNA methylation of cell-free DNA and, therefore, tissues-of-origin, directly from plasma whole-genome sequencing. We validate the performance with 80 pairs of deep and shallow-coverage whole-genome sequencing and whole-genome bisulfite sequencing data.


Assuntos
Ácidos Nucleicos Livres , Metilação de DNA , Metilação de DNA/genética , Sequenciamento Completo do Genoma/métodos , Sulfitos , Ácidos Nucleicos Livres/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala
18.
Clin Epigenetics ; 16(1): 37, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429730

RESUMO

BACKGROUND: The recently identified methylation patterns specific to cell type allows the tracing of cell death dynamics at the cellular level in health and diseases. This study used COVID-19 as a disease model to investigate the efficacy of cell-specific cell-free DNA (cfDNA) methylation markers in reflecting or predicting disease severity or outcome. METHODS: Whole genome methylation sequencing of cfDNA was performed for 20 healthy individuals, 20 cases with non-hospitalized COVID-19 and 12 cases with severe COVID-19 admitted to intensive care unit (ICU). Differentially methylated regions (DMRs) and gene ontology pathway enrichment analyses were performed to explore the locus-specific methylation difference between cohorts. The proportion of cfDNA derived from lung and immune cells to a given sample (i.e. tissue fraction) at cell-type resolution was estimated using a novel algorithm, which reflects lung injuries and immune response in COVID-19 patients and was further used to evaluate clinical severity and patient outcome. RESULTS: COVID­19 patients had globally reduced cfDNA methylation level compared with healthy controls. Compared with non-hospitalized COVID-19 patients, the cfDNA methylation pattern was significantly altered in severe patients with the identification of 11,156 DMRs, which were mainly enriched in pathways related to immune response. Markedly elevated levels of cfDNA derived from lung and more specifically alveolar epithelial cells, bronchial epithelial cells, and lung endothelial cells were observed in COVID-19 patients compared with healthy controls. Compared with non-hospitalized patients or healthy controls, severe COVID-19 had significantly higher cfDNA derived from B cells, T cells and granulocytes and lower cfDNA from natural killer cells. Moreover, cfDNA derived from alveolar epithelial cells had the optimal performance to differentiate COVID-19 with different severities, lung injury levels, SOFA scores and in-hospital deaths, with the area under the receiver operating characteristic curve of 0.958, 0.941, 0.919 and 0.955, respectively. CONCLUSION: Severe COVID-19 has a distinct cfDNA methylation signature compared with non-hospitalized COVID-19 and healthy controls. Cell type-specific cfDNA methylation signature enables the tracing of COVID-19 related cell deaths in lung and immune cells at cell-type resolution, which is correlated with clinical severities and outcomes, and has extensive application prospects to evaluate tissue injuries in diseases with multi-organ dysfunction.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , Metilação de DNA , Ácidos Nucleicos Livres/genética , Células Endoteliais , COVID-19/genética , Curva ROC
19.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542469

RESUMO

The use of non-invasive liquid biopsy-based cell-free DNA (cfDNA) analysis is an emerging method of cancer detection and intervention. Different analytical methodologies are used to investigate cfDNA characteristics, resulting in costly and long analysis processes needed for combining different data. This study investigates the possibility of using cfDNA data converted for methylation analysis for combining the cfDNA fragment size with copy number variation (CNV) in the context of early colorectal cancer detection. Specifically, we focused on comparing enzymatically and bisulfite-converted data for evaluating cfDNA fragments belonging to chromosome 18. Chromosome 18 is often reported to be deleted in colorectal cancer. We used counts of short and medium cfDNA fragments of chromosome 18 and trained a linear model (LDA) on a set of 2959 regions to predict early-stage (I-IIA) colorectal cancer on an independent test set. In total, 87.5% sensitivity and 92% specificity were obtained on the enzymatically converted libraries. Repeating the same workflow on bisulfite-converted data yielded lower accuracy results with 58.3% sensitivity, implying that enzymatic conversion preserves the cancer fragmentation footprint in whole genome data better than bisulfite conversion. These results could serve as a promising new avenue for the early detection of colorectal cancer using fragmentation and methylation approaches on the same datasets.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Sulfitos , Humanos , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biomarcadores Tumorais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...